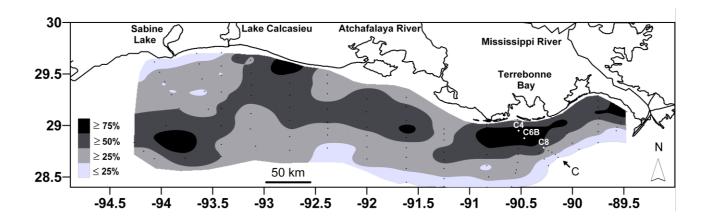
2014 Forecast: Summer Hypoxic Zone Size, Northern Gulf of Mexico

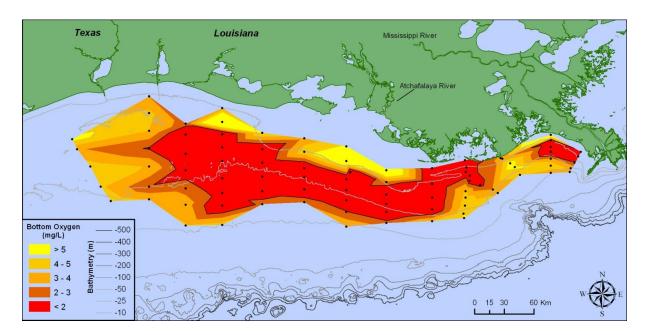
Abstract

Each year a hypoxic water mass with oxygen concentrations ≤ 2 mg l⁻¹ forms in bottom waters of the northern Gulf of Mexico continental shelf. The low oxygen conditions threaten living resources including humans that depend on fish, shrimp and crabs. Nutrients from the Mississippi River watershed, particularly nitrogen and phosphorus, fertilize the surface waters to create excessive amounts of algal biomass, whose decomposition in the bottom layer leads to oxygen distress and even organism death in the Gulf's richest waters. Various models use the May nitrogen load of the Mississippi River as the main driving force to predict the size of this hypoxic zone in late July. This prediction is based on one of these models.

The June 2014 forecast of the size of the hypoxic zone in the northern Gulf of Mexico for July 2014 is that it will cover 14,785 km² (5,708 mi²) of the bottom of the continental shelf off Louisiana and Texas. The 95% confidence interval is that it will be between 12,078 and 17,378 km² (4,663 and 6,710 mi²). This estimate is based on the assumption that there are no significant tropical storms occurring in the two weeks before the monitoring cruise, or during the cruise. If a storm does occur, then the size of the zone is predicted to be 70% of the predicted size without the storm, equivalent to 10,350 km² (3,996 mi²). The predicted volume without storms is 43.2 km³ with a 95% confidence interval between 35.1 and 52.1 km³.


The predicted hypoxic area is about the area of Connecticut. If the area of hypoxia becomes this large, then it will equal about three times the size of the goal of the Hypoxia Action Plan (less than 5,000 km²).

Caveats: 1) This prediction discounts the effect of large storm events that temporarily disrupt the physical and biological system attributes promoting the formation of the low oxygen zone in bottom waters; 2) The potential space on the shelf where hypoxia occurs is limited by the bathymetry; 3) The predictions assume that there will be no abrupt changes in discharge from now through July; 4) Unusual weather patterns affecting coastal winds, as experienced in 2009 and 2011, may skew the prediction to be lower.


Introduction	2
2014 Mississippi River Discharge	4
2014 Nitrogen Loading	5
Hypoxic Zone Size	
Prediction for 2014	
Hypoxia Models and Model Accuracy	7
Post-cruise Assessment	
Acknowledgments	11
References	
Contacts for Further Information	12
Appendix	13

Introduction

Hypoxic water masses in bottom waters of the northern Gulf of Mexico occur when the oxygen concentration falls below 2 mg l⁻¹. This hypoxic water is distributed across the Louisiana shelf west of the Mississippi River and onto the upper Texas coast, from near shore to as much as 125 km offshore, and in water depths up to 60 m (Rabalais et al. 2007; Figures 1 and 2). It has been found in all months, but is most persistent and severe in summer (Turner et al. 2005, Rabalais et al. 2007). The July distribution of hypoxic waters most often is a single continuous zone along the Louisiana and adjacent Texas shelf. Hypoxia also occurs east of the Mississippi River delta, but covers less area and is ephemeral. These areas are sometimes called 'Dead Zones' because of the absence of commercial quantities of shrimp and fish in the bottom layer. The number of Dead Zones throughout the world has been increasing in the last several decades and currently totals over 500 (Díaz and Rosenberg 2008; Rabalais et al. 2010; Díaz unpubl. data; Conley et al. 2011). The Dead Zone off the Louisiana coast is the second largest human-caused coastal hypoxic area in the global ocean.

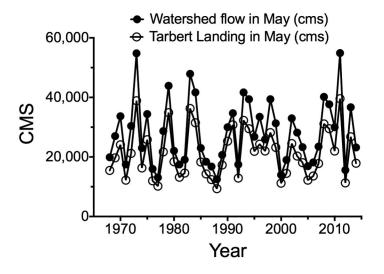
Figure 1. The frequency of mid-summer hypoxia (oxygen $< 2 \text{ mg } \Gamma^1$) over the 60 to 80 station grid on the Louisiana and Texas shelf during the summer from 1985 to 2008. Stations C4, C6Band C8 are labeled on the C transect. Modified from Rabalais et al. (2007).

Figure 2. Oxygen concentrations in bottom-water across the Louisiana-Texas shelf from July 23-28, 2013. Data source: N.N. Rabalais, Louisiana Universities Marine Consortium, and R.E.Turner, Louisiana State University; funded by NOAA, Center for Sponsored Coastal Ocean Research.

Systematic mapping of the area of hypoxia in bottom waters of the northern Gulf began in 1985. Its size from 1985 to 2013 ranged between 40 to 22,000 km² during July and averaged 14,117 km² (5,451 mi²). It was 15,120 km² (5,838 mi²) in 2013. There are few comparable coastwide data for other months, but monthly monitoring was conducted along two transects off Terrebonne Bay, LA, and the Atchafalaya delta, LA, until NOAA budget cuts in 2013. In addition, a coastal ocean observing station off Terrebonne Bay and Caminada Pass (125 km west of the Mississippi River delta) records continuous bottom-water oxygen conditions. The observing station off Caminada Pass (75 km west of the Mississippi River delta) was removed in 2013. The data from them usually indicate that hypoxia occurs by April. [See Appendix Figure 1 for a map of the study area.]

Hypoxic water masses form from spring to fall on this coast because the consumption of oxygen in bottom water layers exceeds the re-supply of oxygen from the atmosphere. The reaeration rate is negatively influenced by stratification of the water column, which is primarily dependent on the river's freshwater discharge and accentuated by summer warming. The overwhelming supply of organic matter respired in the bottom layer is from the downward fluxof organic matter produced in the surface layer. The transport to the bottom layer is the result ofsinking of individual cells, as the excretory products of the grazing predators (zooplankton) that 'package' them as fecal pellets, or as aggregates of cells, detritus and mucus. The respiration of this organic matter declines as it falls through the water column (Turner et al. 1998), but the

descent rate is rapid enough that most respiration occurs in the bottom layer and in the sediments.


The amount of organic matter produced in the surface waters is primarily limited by the supply of nitrogen, not phosphorus (Turner and Rabalais 2013, Scavia and Donnelly 2007). The evidence for this conclusion is that the supply, or loading, of nitrogen (primarily in the form of nitrate-N) from the Mississippi River watershed to the continental shelf within the last few decades is positively related to chlorophyll a concentration (chl a; Walker and Rabalais 2006; R^2 0.30 – 0.42), the rate of primary production (Lohrenz et al. 1997; $R^2 > 0.77$; Lohrenz et al. 2008), and the spatial extent of the hypoxic area in summer (Turner et al. 2012; $R^2 > 0.9$). The size of the shelfwide hypoxic zone has increased since it began occurring in the 1970s, simultaneously with the rise in carbon sequestration in sediments, indicators of increased diatom production, and shifts in foraminiferal communities (Turner and Rabalais 1994, Sen Gupta et al. 1996, Turner et al. 2008). There is, therefore, a series of cause-and-effect arguments linking nitrogen loading in the river to phytoplankton production, to bottom water oxygen demand, and to the formation and maintenance of the largest hypoxic zone in the western Atlantic Ocean.

The oxygen consumption creates a zone of hypoxia that is constrained by the geomorphology of the shelf, horizontal water movement, stratification and vertical mixing (Obenour et al. 2012; Justić and Wang 2014). The significance of reducing nutrient loads to these coastal waters rests on the coupling between the organic matter produced in response to these nutrients and its respiration in the bottom layer (MRGOM WNTF 2001, 2008; Rabalais et al. 2002, 2007, 2010; SAB 2007). The primary driver of the increased nutrient loading is agricultural land use (Alexander et al. 2008, Broussard et al. 2009), which is strongly influenced by farm subsidies (Broussard et al. 2012). The amount of nutrient loading from the river has remained the same in recent decades, or is increasing (Sprague et al. 2011).

2014 Mississippi River Discharge

Hypoxic conditions are dependent on river discharge because of the influence that water volume and salinity have on the physical structure of the water column and on the nutrient load delivered to the coastal zone. The nutrient load is dependent on the concentration of nutrients, primarily nitrogen, and on the discharge. River discharge is, therefore, a key environmental parameter of interest.

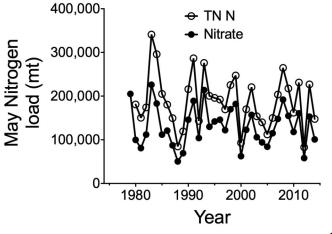

The Mississippi River discharge in May 2014 averaged 23,200 m³ s⁻¹ (cms) (Appendix Figure 2), which is the 14th in 46 years from 1968 to 2014. This is below average, but not particularly low (Figure 3). The May discharge in 2013 was, in contrast, 36,700 cms and the 2012 May discharge was 16,200 m³ s⁻¹.

Figure 3. The discharge in May for the Mississippi River watershed and south of St. Francisville, LA at Tarbert Landing, MS. CMS is cubic meters per second, m³ s⁻¹.

2014 Nitrogen Loading

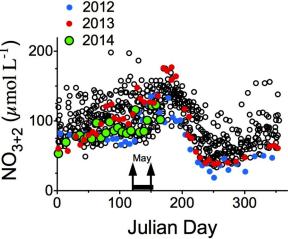

The US Geological Survey publishes monthly estimates of nitrogen loading and other aspects of water quality from the Mississippi River watershed into the Gulf of Mexico (http://toxics.usgs.gov/hypoxia/mississippi/). The USGS web site has a variety of information on these data calculations, including an estimate of the 95% confidence range for the nitrogen load. The May nitrite+nitrate (NO₂₊₃) and total nitrogen (TN) load for the Mississippi River watershed for May is shown in Figure 4. Comparative information on the seasonal concentration of dissolved nitrite+nitrate in the Mississippi River at Baton Rouge, LA, is in Figure 5.

Figure 4. The annual nitrite+nitrate (NO₂₊₃) and total nitrogen (TN) load for the Mississippi River watershed for May. The estimates are from the USGS.

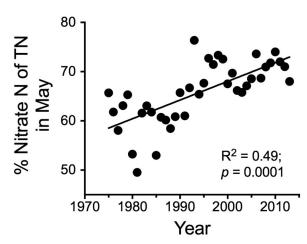
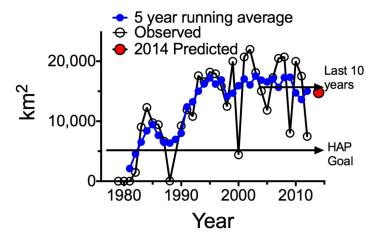

1997-2011

Figure 5. The concentration of nitrite+nitrate (NO_{2+3}) at Baton Rouge, La from 1997 through April 2014. The data for 2012 and 2013 are shown separately. Unpublished data from Turner et al.

The concentration of nitrite+nitrate at Baton Rouge was relatively low in the beginning of 2014, which was near the lowest values measured since 1997. The concentration rose at the beginning of May and are expected to rise slightly through May (the data are not yet available). The river discharge was a rather low level, however, to result in a May nitrite+nitrate loading that was equal to average value from 2000 to 2013 (Figure 5). The total nitrogen load in May is increasingly dominated by the nitrite+nitrate load (Figure 6).

Figure 6. The % nitrite+nitrate load of the total nitrogen load for May in the main channel of the Mississippi River. The estimates are from the USGS.

Hypoxic Zone Size


Models for predict the size of the hypoxic zone size in July primarily because there are no comparable shelfwide data exist for other months. Data on the size of the hypoxic zone in late July from 1985 to 2013 are based on annual field measurements (data available at http://www.gulfhypoxia.net). The 2014 mapping cruise is scheduled for late July and the data will be posted daily at the same web site. The values for 1989 (no funding available) and 1978-1984 are estimated from contemporary field data. The estimates for before 1978 assume that there was no significant hypoxia then and are based on results from various models. Data for five years were not included in the analysis because there were strong storms just before or during the cruise (1998, 2003, 2005, 2008, 2010, 2011 and 2013). These storms, by comparison of precruise and post-cruise sampling to data collected during the cruise, changed currents, disrupted the water column, and re-aerated the water column. It may take a few days to several weeks, depending on water temperature and initial dissolved oxygen concentration, for respiration to reduce the dissolved oxygen concentration to ≤ 2 mg 1^{-1} after the water column stratification is re-established. The average reduction in hypoxia size in years with storms compared to years without storms is $70 \pm 9\%$.

Prediction for 2014

We used several models used to forecast the hypoxic zone in the northern Gulf of Mexico in July 2014. The most accurate model prediction, we think, is that it will cover 14,785 km² (5,708 mi²) of the bottom of the continental shelf off Louisiana and Texas. The 95% confidence interval is that it will be between 12,078 and 17,378 km² (4,663 and 6,710 mi²) (Figure 7). This

estimate is based on the assumption that there are no significant tropical storms occurring in the two weeks before the monitoring cruise, or during the cruise. If a storm does occur, then the size of the zone is predicted to be 70% of the predicted size without the storm, equivalent to $10,350 \text{ km}^2$ (3,996 mi²).

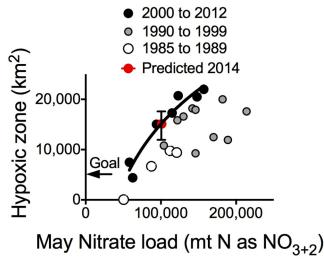
The predicted hypoxic area is about the area of Connecticut. If the area of hypoxia becomes this large, then it will equal about three times the size of the goal of the Hypoxia Action Plan (HAP; less than 5,000 km²).

Figure 7. The measured and estimated size of the hypoxic zone from 1979 to 2012 and the predicted size for 2014.

Hypoxia Models and Model Accuracy

Models are used to summarize information, to test assumptions and to make predictions that may be useful for other purposes, including management. There are multiple models of the size of the hypoxic zone that are useful in evaluating the influence of nitrogen load and variations in ocean currents, climate, etc. These models do not always produce similar results, and model improvement is one focus of ongoing research efforts supported by the NOAA Center for Sponsored Coastal Ocean Research.

The various statistical models we use to predict the size of the hypoxic zone in July 2014 are based on the May total nitrite+nitrate nitrogen load to the Gulf from the main stem of the Mississippi River and the Atchafalaya River. The residence time of the surface waters along this coast is about 2 to 3 months in the summer, hence the 2-3 month lag between the loading rate calculated in May and the size of the hypoxic zone in July. The stability of these models, however, is not fixed, because the ecosystem is evolving. For example, the size of the hypoxic zone for the same amount of nitrogen loading (as nitrite+nitrate) increases each year (Turner et al. 2008; 2012). Further, the models will eventually be adjusted to account for the limited space on the shelf for hypoxia to occur (a physiographic constraint).


We use several models to predict the size of the hypoxic zone. All of them use the nutrient loading from the Mississippi River in May, 2 to 3 months before the annual summer hypoxia cruise that maps its areal extent (note: concentration \times discharge equals the nitritenitrate load). The unstated hypothesis implied by these models is that the system can be treated

as a chemostat limited by N, in the same way that the chlorophyll *a* concentration or algal biomass in lakes might be modeled by P loading to the lake. The Streeter–Phelps inspired models initiated by Scavia and colleagues also incorporate this nutrient dose: response framework (Scavia et al. 2003, 2004, Scavia and Donnelly 2007) in their predictive schemes.

The model used assumes that the size of the zone is driven mostly by what happens this year and that other influences cause variation around a relatively stable baseline suite of factors. An example of secondary influences might be seasonal or annual variations in wind speed or freshwater volume. This model is based on the nitrate load of the current year. The reference point for calibrating the model is the behavior of the system in recent history. We use the last seven years of data on the relationship between hypoxic zone size and nutrient loading for this model. Others do something similar. The USGS uses the last five years of data to calibrate the 'LOADSET' model, for example, and Scavia and Donnelly (2007) update the coefficients in their model annually by using rolling 3–5 year averages for coefficients (Evans and Scavia, 2010). Their recent numerical adaptation has the effect of adjusting model input with each year, but not explaining the biological/physical basis for these changes any better than our model does with the year term. The year term in this model is, in other words, descriptive, but not explanatory beyond the simple nitrogen loading = oxygen deficit relationship.

The results of this model are in Figure 8. The nitrate data were transformed into their log10 equivalents to avoid the problem encountered in 2012 when the prediction was much larger than the actual size, which is attributable to using a simple linear regression analysis to fit a curvilinear relationship. If there is significant curvature (bowed upward) without this transformation, then both the lower and upper ends of the data field are overestimated. This effect is more dramatic when the relationship is being extended into a sparse data field at the extremes of nitrogen loading, as happened during 2012, which was a drought (and low nitrate loading). The estimate for 2014 exactly overlaps the calibration curve ($R^2 = 0.98$; Figure 8).

Figure 8. The relationship between nitrate+nitrate loading in May and the size of the hypoxic zones from 1976 to 2010. Several intervals are broken out, with the last one (2000 to 2012) being fit to a linear regression model. The predicted size of the hypoxic zone for 2014 is indicated with the red dot (with a 95% confidence interval.)

Some of the sensitivity to nitrate loading is carried over from one interval to the next. We call these effects 'legacy' effects, and they may last decades. A legacy effect can be explained as the result of incremental changes in organic matter accumulated in the sediments one year, and

metabolized in later years (Turner and Rabalais 1994), by changes in the % nitrate of the total nitrogen pool (e.g., Figure 6), or long-term climate change.

A similar calculation for the predicted volume of hypoxia is based on the relationship between hypoxia area and volume (Figure 9). The predicted volume for 2014 is 43.2 km³ (35.0 to 52.1 km³).

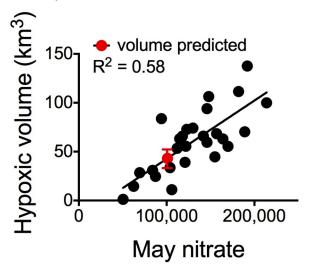


Figure 9. The relationship between nitrate+nitrate loading in May and the volume of the hypoxic zones from 1985 to 2011. The volume data are from Obenour et al. 2013. The predicted size of the hypoxic zone for 2014 is indicated with the red dot (with a 95% confidence interval.)

The statistical models used here, and their predecessors, are fairly accurate models based on past performance (Turner et al. 2008, 2012). The predictions in 2006, 2007, and 2010, for example, were 99%, 107%, and 99%, respectively, of the measured size. The model used here describes 96% of the variation since 2000 (inclusive; Figure 8). The equivalent model for the Baltic Sea low oxygen conditions explains 49 to 52% of the variation in the inerannual variation in bottom water oxygen concentration (Conley et al. 2007).

Nutrient load models are robust for long-term management purposes, but they are less robust when short-term weather patterns move water masses or mix up the water column. The size of the hypoxic zone this year is expected to follow the relationship with nitrogen loading—as long as there is no 'wildcard' in the form of a tropical storm at the time of the annual summer cruise. Some of the variation in the size of the Gulf hypoxic zone size, for example, is due to reaeration of the water column during storms. The size of the summer hypoxic zone in 2008, for example, was less than predicted because of the influence of Hurricane Dolly. Tropical Storm Don was a similar complication in 2011. The long-term trend, however, is that the area of hypoxia is larger for the same amount of nitrogen loading (Turner et al. 2008, 2012; Figure 8).

The low dissolved oxygen) in the bottom waters also increases when sustained and strong winds move oxygen from the surface to the bottom. After the stronger winds, calm winds will allow the physical stratification of the water column to return leading to a reduction in oxygen through respiration that is not restored by mixing of higher oxygen water from the surface to the bottom. As a result extended periods of hypoxia will form as show at Station C6C in 20-m water depth off Terrebonne Bay for May/June at the time of this writing (Figure 10).

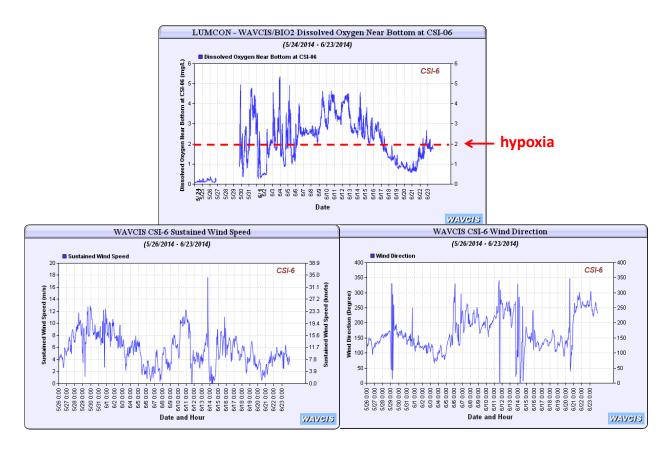


Figure 10. Bottom-water dissolved oxygen concentration (top) at Station C6C in 20-m water depth off Terrebonne Bay from mid-May to mid-June 2014 in relation to sustained wind speed and wind direction. (LSU LUMCON WAVCIS/BIO2, http://wavcis.csi.lsu.edu)

Other models that also predict oxygen dynamics on this shelf are discussed in Bierman et al. (1994), Justić et al. (2003), Scavia and Donnelly (2007), and Scavia et al. (2003, 2004). The University of Michigan forecast site is: http://www.sitemaker.umich.edu/scavia.

The data from this year's cruise will be used to quantify the relative merits of the assumptions of the two models, and to compare them with other models of various kinds. This is an example of how long-term observations are one of the best ways to test and calibrate ecosystem models, to recognize the dynamic nature of our changing environment(s), and to improve the basis for sound management decisions.

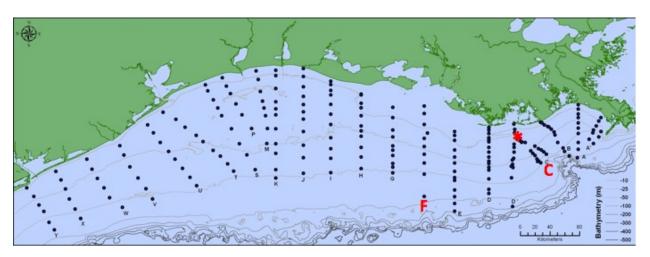
Post-cruise Assessment

A post-cruise assessment will be made at the end of the summer shelfwide hypoxia cruise and posted on the same website where this report appears (http://www.gulfhypoxia.net).

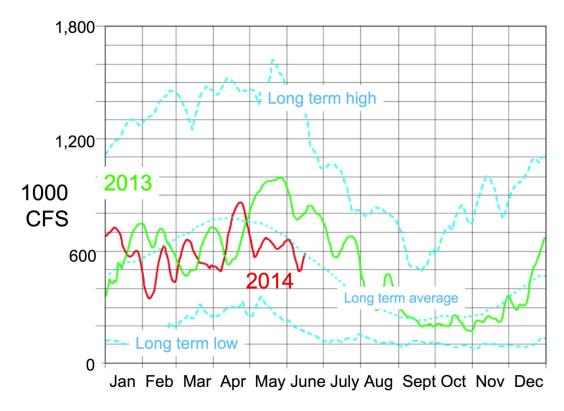
Acknowledgments

Support was received from the NOAA Center for Sponsored Coastal Ocean Research Grants No. NA09NOS4780204 to Louisiana Universities Marine Consortium and NA09NOS4780230 to Louisiana State University. Charlie Milan analyzed the nutrient samples for the Mississippi River at Baton Rouge. Louisiana hypoxia data are from Rabalais et al., LUMCON. We thank John Wickham and Brent T. Aulenbach and colleagues at the USGS for providing the nitrogen loading data for the Mississippi River.

References


- Alexander, R.B., R.A. Smith, and G.E. Schwarz 2008. Differences in phosphorus and nitrogen delivery to the Gulf of Mexico from the Mississippi River basin, **Environmental Science and Technology** 42: 822–830.
- Bierman, V.J., Jr., S.C. Hinz, D. Zhu, W.J. Wiseman, Jr., N.N. Rabalais, and R.E. Turner 1994. A preliminary mass balance model of primary productivity and dissolved oxygen in the Mississippi River plume/inner Gulf shelf region. **Estuaries** 17: 886–899.
- Broussard, W. and R.E. Turner 2009. A century of changing land use and water quality relationships in the continental U.S. **Frontiers in Ecology and the Environment** 7: 302-307.
- Broussard, W., R.E. Turner, and J. Westra 2012. Do federal farm policies and agricultural landscapes influence surface water quality? **Agriculture, Ecosystems & Environment** in press 10.1016/j.agee.2012.05.022
- Conley, D.J., J. Carstensen, G. Ærtebjrg, P.B. Christensen, T. Dalsgaard, J.L.S. Hansen, and A. B. Josefson 2007. Long-term changes and impacts of hypoxia in Danish coastal waters. **Ecological Applications, Supp.** 17: S165-S184.
- Conley, D.J. and 18 co-authors 2011. Hypoxia is increasing in the coastal zone of the Baltic Sea. **Environmental Science and Technology** 45: 6777–6783. doi.org/10.1021/es201212r.
- Díaz, R.J. and R. Rosenberg 2008. Spreading dead zones and consequences for marine ecosystems. **Science** 321: 926-929.
- Evans, M.A. and D. Scavia 2010. Forecasting hypoxia in the Chesapeake Bay and Gulf of Mexico: model accuracy, precision, and sensitivity to ecosystem change. **Environmental Research Letters** 6: 015001.
- Justic, D. and L. Wang 2014. Assessing temporal and spatial variability of hypoxia over the inner Louisiana-upper Texas shelf: Application of an unstructured-grid three-dimensional coupled hydrodynamic-water quality model. **Contintental Shelf Research** 72: 163-179.
- Justić, D., N.N. Rabalais, and R.E. Turner 2003. Simulated responses of the Gulf of Mexico hypoxia to variations in climate and anthropogenic nutrient loading. **Journal of Marine Systems** 42: 115-126.
- MRGOM WNTF (Mississippi River/Gulf of Mexico Watershed Nutrient Task Force) 2001. Action Plan for Reducing, Mitigating, and Controlling Hypoxia in the Northern Gulf of Mexico; Office of Wetlands, Oceans, and Watersheds, U.S. Environmental Protection Agency; Washington, DC.
- MRGOM WNTF (Mississippi River/Gulf of Mexico Watershed Nutrient Task Force) 2008. *Action Plan for Reducing, Mitigating, and Controlling Hypoxia in the Northern Gulf of Mexico*. Office of Wetlands, Oceans, and Watersheds, U.S. Environmental Protection Agency, Washington, D.C.

- Obenour, D.R., A.M. Michalak, Y. Zhou, and D. Scavia 2012. Quantifying the impacts of stratification and nutrient loading on hypoxia in the northern Gulf of Mexico. **Environmental Science and Technology** 46: 5489–5496.
- Obenour, D.R., D. Scavia, N.N. Rabalais, R.E. Turner, A.M. Michalak 2013. A retrospective analysis of mid-summer hypoxic area and volume in the northern Gulf of Mexico, 1985-2011. **Environmental Science and Technology** 47: 9808–9815.
- Rabalais, N.N., R.E. Turner, and D. Scavia 2002. Beyond science into policy: Gulf of Mexico hypoxia and the Mississippi River. **BioScience** 52: 129-142.
- Rabalais, N.N., R.E. Turner, B.K. Sen Gupta, D.F. Boesch, P. Chapman, and M.C. Murrell 2007. Hypoxia in the northern Gulf of Mexico: Does the science support the plan to reduce, mitigate and control hypoxia? **Estuaries and Coasts** 30: 753-772.
- Rabalais, N.N., R.J. Díaz, L.A. Levin, R.E. Turner, D. Gilbert, and J. Zhang 2010. Dynamics and distribution of natural and human-caused hypoxia. **Biogeosciences** 7: 585-619.
- Scavia, D., N.N. Rabalais, and R.E. Turner 2003. Predicting the response of Gulf of Mexico hypoxia to variations in Mississippi River nitrogen load. **Limnology and Oceanography** 48: 951-956.
- Scavia, D., D. Justić, and V.J. Bierman, Jr. 2004. Reducing hypoxia in the Gulf of Mexico: Advice from three models. **Estuaries** 27: 419–425.
- Scavia, D. and K.A. Donnelly 2007. Reassessing hypoxia forecasts for the Gulf of Mexico. **Environmental Science and Technology** 41: 8111-8117.
- Science Advisory Board (SAB) 2007. Hypoxia in the northern Gulf of Mexico, An Update. U.S. Environmental Protection Agency, Science Advisory Board (SAB) Hypoxia Panel Advisory, Report EPA-SAB-08-003, Environmental Protection Agency, Washington, D.C.http://yosemite.epa.gov/sab/sabproduct.nsf/C3D2F27094E03F90852573B800601D93/\$File/EPA-SAB-08-003complete.unsigned.pdf
- Sprague, L.A., R.M. Hirsch, and B.T. Aulenbach 2011. Nitrate in the Mississippi River and its tributaries, 1980 to 2008: Are we making progress? **Environmental Science and Technology** 45:7209-7216. dx.doi.org/10.1021/es201221s
- Turner, R.E., N. Qureshi, N.N. Rabalais, Q. Dortch, D. Justić, R. Shaw and J. Cope 1998. Fluctuating silicate:nitrate ratios and coastal plankton food webs. **Proceedings, National Academy of Sciences (USA)** 95: 13048-13051.
- Turner, R.E. and N.N. Rabalais 1994. Coastal eutrophication near the Mississippi River delta. **Nature** 368: 619-621
- Turner, R.E., N.N. Rabalais, E.M. Swenson, M. Kasprzak, and T. Romaire 2005. Summer hypoxia, Northern Gulf of Mexico: 1978 to 1995. **Marine Environmental Research** 59: 65-77
- Turner, R.E., N.N. Rabalais and D. Justić 2008. Gulf of Mexico hypoxia: Alternate states and a legacy. **Environmental Science and Technology** 42: 2323-2327.
- Turner, R.E., N.N. Rabalais and D. Justic 2012. Predicting summer hypoxia in the northern Gulf of Mexico: Redux. **Marine Pollution Bulletin** 64: 318-323. DOI: 10.1016/j.marpolbul.2011.11.008


Contacts for Further Information

Nancy N. Rabalais (LUMCON, <u>nrabalais@lumcon.edu</u>) R. Eugene Turner (LSU, euturne@lsu.edu)

Appendix

Appendix Figure 1. Location of hypoxia monitoring stations sampled in summer, the transects off Terrebonne Bay (transect C) and Atchafalaya Bay (transect F), and the ocean observing systems (asterisk) off Terrebonne Bay.

Appendix Figure 2. The daily river discharge at Tarbert Landing from 1935 through 6 Jun 2014. Units are cubic feet per second. Figure modified from http://rivergages.mvr.usace.army.mil/WaterControl/Districts/MVN/tar.gif.